
Single Molecule Analysis Research Tool (SMART): An
integrated approach for analyzing single molecule data

Max Greenfeld1,2,#, Dmitri S. Pavlichin3,#, Hideo Mabuchi4,∗ Daniel Herschlag1,2,∗

1 Dept. of Chemical Engineering, Stanford University, Stanford, CA, USA
2 Dept. of Biochemistry, Stanford University, Stanford, CA, USA
3 Dept. of Physics, Stanford University, Stanford, CA, USA
4 Dept. of Applied Physics, Stanford University, Stanford, CA, USA

# These authors contributed equally

∗ E-mail: Corresponding herschla@stanford.edu
∗ E-mail: Corresponding hmabuchi@stanford.edu

Supporting Information

1



Supporting Figures

2



A

6060 410410

1900019000

k12 = 0.01
SN

R

101 102 10310−1

100

101

Mean Transitions Per Trace
101 102 10310−1

100

101

22
1414

9393

630630

50005000

101 102 10310−1

100

101

k12 = 0.1 k12 = 0.3B C

43004300

2900029000

66
4141

280280 19001900

1300013000
8800088000

50005000

880000880000

130000130000
28002800

50005000

 

−7 −6 −5 −4 −3 −2 −1

log10 MSE = log10< (k12 - k12)2>ˆ

101 102 10310−1

100

101
50005000

SN
R

D k12 = 0.3

Mean Transitions Per Trace

b = 3b = 3
b=4b=4

Figure S1: Performance of HMM fits depends jointly on SNR, trace length, and rate
constants. The plots are contoured, nearest-neighbor smoothed plots of mean square
error (MSE) for the estimator of k12, log10 MSE = log10〈(k̂12 − k12)2〉 sampled on a
10 by 10 grid of SNR and trace length values for three values of k12 (and k21 = k12).
Both longer observation times (higher mean number of transitions per trace) and
higher SNR reduce the mean square error in the estimator of k12 produced by the
fit. Dashed black lines indicate regions where the product of the SNR and the trace
length is constant, with the value of this constant shown in black next to the lines.
The solid red line indicates the region of SNR×T = 5000, the value used in the body
of the paper. For an experiment constrained to one of the dashed lines, the minimum
MSE is obtained when the dashed line is tangent to the lowest-value constant MSE
line. For SNR×T = 5000, the MSE-optimal SNR is (A) ∼1 for k12 = 0.01, (B) ∼2
for k12 = 0.1, (C) ∼4 for k12 = 0.3. The white dashed line indicates the region below
which a one-state fit achieves a lower BIC for more than half the simulated traces.
(D) The effect of two alternative photobleaching models on the accuracy of inferred
rates are plotted for the condition examined in Fig. 3C. The photobleaching models
are described by the relationship T(SNR+0.001 SNRb)=5000, where b = 3 or 4.
This relationship was chosen to reflect the faster than expected photobleaching at
high SNR that can occur in some experiments.
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Figure S2: HMMs are not an unbiased estimator of rate constants. Traces were
simulated for the three kinetic models and SNRs were varied according to the emis-
sion model described in the Methods. The colored swaths represent the region that
bound 90% of the determined rate constants from the 1000 simulated traces that
were analyzed by fitting to two state HMMs. This result clearly shows at an SNR
of ∼1 that maximum likelihood estimation for HMMs does not produce an unbiased
estimator for the model parameters as all models converge to the value of k12 = 0.1.
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Figure S3: HMM algorithms in SMART can determine one-parameter and two-
parameter confidence intervals. In some regimes examination of the two-parameter
fits give a better approximation of the true uncertainty in the determined rate con-
stants. (A) Depiction of pairwise confidence intervals calculated for k12 = k21 = 0.1
and SNRs of 0.7 and 5 for two particular traces and determined according to the
emissions model described in the Methods. The black circle/cross indicates the
true transition probabilities. Heat map colors indicate the likelihood of the trace
given a particular value of k12 and k21, normalized to 1 at the maximum likelihood
estimator. The red oval indicates the 90% pairwise confidence interval. The red
dashed lines are left-, right-, bottom-, and top-most tangents to the oval. The red
circles indicate the one-dimensional projection confidence bounds obtained by vary-
ing only one parameter at a time. At an SNR of 0.7 the uncertainties are correlated
more than at an SNR of 5. This causes underestimation of uncertainties in the one-
dimensional projections of confidence intervals at SNR values below approximately
1 (Fig. 3). (B) To compare the uncertainties depicted in (A) over a range of SNR
values, the left- and right-most points on the oval were compared to the simple one
dimensional projections. The red swath and region bounded by the blue dashed
line represent the regions that bound 90% of the determined rate constants from
the 500 simulated traces that were analyzed by fitting to two-state HMMs or with
thresholding, respectively. The red error bars on the top plot show the confidence
intervals determined by the left- and right-most points on the oval (Fig. S3 A red
dashed lines). The bottom plot shows the one-dimensional projection of uncertain-
ties (Fig. S3 A red circles). In the low SNR regime the left- and right-most points
on the oval are a better approximation of the measurement uncertainties compared
to the one-dimensional projections. Overestimation of uncertainties (red error bars
compared to the red swath) can occur when the normal approximation to the like-
lihood function begins to break down. (C) Same as in (B) but where the kinetic
model is k12 = 0.3 and k21 = 0.1.
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Figure S4: Additional simulations mapping out the ability of the BIC to identify the
presence of a third state. In these simulations we considered the effect of transition
rate, trace length and the distinguishability of states on the ability of the BIC to
identify the presence of a third state in a trace. We only considered the difference in
the BICs between the two- and three-state models shown in B and E. Positive values
indicate the third state is identified and the larger the value the more distinguishable
the state is. As demonstrated in Fig. 5 the difference among the various three-state
models and the four-state model is quite small relative to the one- and two-state
models. Therefore models that are strongly three-state by this test should show the
same trend for the other three-state and four-state models shown in Fig. 5. (A)
Three-state traces were generated from a model that in the limit of large k32 become
equivalent to the two-state traces with an SNR of 4 and k12 = k21 = 0. When the
time spent in the third state is significant, its emission intensity is midway between
that of the low and high intensity emission. (B) Simulated traces were fit to the
most general two- and three-state models where all transitions were allowed and
each state could have a unique emissions distribution. (C) For trace lengths varying
from 150 to 50,000 the mean difference in the ∆BIC = (BIC3 − BIC2) value and
standard deviation determined from fits to 50 simulated traces are plotted for values
of k32 varying from 0.001 to 0.5. The point where all the rate constants are equal
is the point where the models were most distinguishable. In almost all instances
the third state was detected. (D) Simulation conditions were identical to those used
in A, except the third state had an emissions distribution identical to the second
state, as shown by the square surrounding states 2 and 3 compared to only state 2
in part A. When all rate constants are equal this model is indistinguishable from
a two-state model. (E) Same as in (B) except the third state does not have an
unique emissions intensity, as shown by the square surrounding the states 2 and 3
compared to only state 2 in part A. (F) For trace lengths varying from 1500 to 50,000
the mean difference in the BIC1 − BIC2 value and standard deviation determined
from fits to 50 simulated traces are plotted for values of k32 varying from 0.001 to 0.5.
For about half of the conditions examined the third state was not distinguishable,
as indicated by the negative difference in the BICs. Moreover the differences are
relatively small compared to the case when the states have distinguishable means.
These results indicate a third state that does not have a unique emission intensity
can be identified using this technique, but the sensitivity is significantly reduced
from situations where the state does produce a unique intensity. An additional
consideration for fits to models of this type is that they are under-constrained and
no unique set of rate constants provides the best fit. Rather, a family of rate
constants fit the traces equally well; further discussion of this point is in Supporting
Methods.
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Figure S5: Analysis of cluster size and log likelihood (log p(data | model)) cluster
selection criteria for clustering two non-exchanging populations of molecules. Traces
with SNRs of 2, 5, 10 and 15 were generated from two non-exchanging pools of
molecules (100 traces each) with one transition rate differing by two fold. The traces
were fit to two-state HMM models and subjected to clustering analysis in SMART,
traces were fit with 1 to 4 clusters. (A) The cluster size (each bar corresponds to
a cluster) for each cluster is shown. The black and green bars correspond to an
individual cluster size at the indicated SNR, the bars corresponding to the third
and fourth cluster in the 3- and 4- cluster fits are not visible due to their small size.
(B) In addition to cluster size (see main text) the log likelihood is a useful model
selection criteria. The log likelihood always increases as more states are added to a
fit. When little change is seen in the log likelihood with added states, this indicates
that the states are not necessary to fit the data well. A large change between the one-
and two-state fits is seen at all SNR, with much smaller changes seen for the higher-
order fits. While the log likelihood should always increase with an increase in the
number of fitted parameters, some uncertainty (due to variation in initial conditions
and propensity of the algorithm to converge to a local minimum) is associated with
the final fitted values. As discussed in the main text this uncertainty is difficult to
quantify.
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Supporting Methods

Hidden Markov models for multichannel single

molecule signals

This section exists mostly to establish notation. A discrete-time, K-state HMM
describes the stochastic generation of an unobserved sequence of hidden states
(x1, . . . , xN) and a corresponding observed sequence of emissions (y1, . . . , yN). A
complete description of a HMM requires a K ×K transition matrix A

(A)ij = pi→j = P(xt+1 = j|xt = i) (1)

and any parameters necessary to calculate the emission probabilities P(yt|xt = k).
the case of normally distributed emission values, for example, we must specify a
set of means µ1, . . . , µK and variances σ2

1, . . . , σ
2
K . When the observed emissions are

in the continuous space of reals, as in the normal case, P(y|x) is a sample from a
probability density function (pdf) and is not a probability, but we shall keep the
P(y|x) notation for clarity. It is useful to consider a diagonal K×K emission matrix
Et, whose elements for each time t are

(Et)ii = P(yt|xt = i) (2)

If the observed data yt = (yt,1, . . . , yt,C) comes from C channels, such as a donor
and acceptor channel in the FRET case, we can obtain an overall emission matrix
by multiplying the emission matrices of each channel

Et =
C∏
c=1

Et,c (3)

This expression is valid only if the multiple channels emit independently for every
hidden state of the model. Otherwise, we can obtain an emission matrix by sampling
from the joint pdf of the multiple channels, say, a multivariate normal pdf with a
covariance matrix for the different channels.

Data likelihood computation

Suppose that at time t = 0 our best guess for the state of the system is the vector
f0[i] = P(x0 = i). If we then watch the system for N steps and record N observations
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(the data), we can compute the probability of seeing these observations given our
knowledge of the HMM parameters (the model):

p(data | model) = ~1K ·

(
N∏
t=1

EtA
T

)
~f0 (4)

We must take the dot product with ~1K , the vector of K 1’s, in order to sum over
the K possible final states of the system.

Computing the maximum likelihood estimator for

model parameters

The maximum likelihood estimator (MLE) for the transition rates and emission pa-
rameters of a HMM maximizes the quantity in equation 4 as a function of the model
parameters. We calculate the MLE for a K-state HMM for a single data trace by
the Baum-Welch algorithm (BW). BW is an expectation-maximization algorithm
that iteratively computes expected log likelihood of the data given the model (ex-
pectation) and updates the model parameters to maximize this expected likelihood
(maximization). We run the algorithm until numerical convergence of the model
parameters.

The MLE for a HMM is not unique, in that we could re-label all of the states for an
MLE to obtain another MLE with permuted transition and emissions matrices. This
possibility prevents us from directly comparing inferred model parameters for two
different traces, since two apparently different fits may actually be similar after state
re-labeling. To break this symmetry we enforce an arbitrary constraint during the
optimization process that the states are numbered in order of increasing signal mean.

If our model contains multiple states with identical emissions distributions, the
transition rates may not be identifiable. That is, a continuum of rates aij may pro-
vide an equally good fit to the data. In this case, our fitting algorithm will output
one set of parameters that fit the data well but provide no information about the
set of all parameters that fit equally well. It may still be useful to fit these un-
derconstrained models in inferring the number of hidden states (see “Inferring the
number of hidden states” section below). For systems that are in thermodynamic
equilibrium (satisfy detailed balance) [1] shows that we can fit a unique set of rates
if we assume no interconversion between any states that have identical emissions
distributions, and that this assumption does not hurt the quality of the fit (does not
reduce p(data | model)).
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Baum-Welch algorithm details

Given a sequence of observations (y1, . . . , yN) and an initial guess for the HMM
transition rates and emission parameters, which give us an initial transition matrix
Â and emission matrices Êt=1,...,N , BW recursively computes three K by 1 vector

quantities for each time step. ~f,~b, ~p are proportional to the forward, backward, and
posterior probabilities:

~ft ∼ P (xt = k, y1, . . . , yt)k=1...K ∼
(
Êt Â

T
)
~ft−1

~bt ∼ P (yt+1, . . . , yN |xt = k)k=1...K ∼
(
Â Êt+1

)
~bt+1

~pt ∼ P (xt = k|y1, . . . , yN)k=1...K ∼ ~ft �~bt

(5)

To avoid numerical underflow we normalize ~ft and ~bt at each time t, hence the ∼
notation. � denotes the pointwise product of two vectors: ~a�~b[i] = ~a[i] ·~b[i]. These

computations require initial conditions; a reasonable choice for ~f0 is the steady-
state occupation distribution implied by Â, while ~bN = (1, . . . , 1)T by definition.
The most probable state at each time t the data and our guess for the model is then

x̂t = arg max
k=1...K

~pt[k] (6)

Once computed, the quantities in equation 5 can be used to update the current guess
for the transition matrix Â and the emission parameters used to compute Êt=1,...,N .
For example, for a single poissonian channel, the MLE mean signal value in state i

i is given by

λ̂i =

∑N
t=1 yt ~pt[i]∑N
t=1 ~pt[i]

(7)

Inferring the number of hidden states

The log-likelihood of the observations given the maximum likelihood K-state HMM
is a nondecreasing function of K. A common method to select the number of
hidden states is to penalize additional degrees of freedom by choosing a model that
minimizes the Bayesian Information Criterion (BIC), defined by

BIC = −2 log p(data | model) + d logN (8)

where d is the number of degrees of freedom for the HMM and N is the number
of observations. For example, a two-state HMM with a single poissonian emissions
channel has four free parameters (two rates and two signal means). Our implemen-
tation calculates and plots the log likelihood and BIC for HMMs with up to some
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user-defined maximum number of states.

Fitting a model with parameters that are not identifiable when multiple states
have identical emissions distributions returns one of a continuum of models that
all fit the observations equally well. Fitting an underconstrained model may still be
useful, in that p(data | model) will still increase as we fit models with increasingly
many hidden states. For example, we may observe a dwell time distribution in a
low FRET state that is well fit by a mixture of two exponential distributions, so we
may infer that there are two hidden states with an identical emissions distribution,
even if we are unable to uniquely determine the interconversion rates between these
two states.

Calculation of confidence region for model param-

eters

After obtaining an MLE estimator for the HMM parameters, we vary the model
parameters in a region near the MLE and record decreases in the log likelihood
(equation 4). We can vary one parameter while holding the others fixed, or vary a
subset of them together. We obtain likelihood ratio confidence bounds by choosing
a threshold for the minimum value of the data likelihood that all models inside the
confidence bound satisfy.

We follow the approach of Giudici et al. [2]. Let θ in Rd be the vector of true,
unknown model parameters, and MLE in Rd the d-dimensional MLE for the model
parameters found by BW. We have null hypotheses of the form θ = θ′ with likelihood
ratio (LR) test statistic

LR = 2 (log p(data |θMLE)− log p(data |θ′)) (9)

For large observation number N and under the null hypothesis LR is approximately
χ2
d-distributed. We reject all models for which LR > χ2

d(1−α) to form our confidence
bound, where a typical choice for α is 0.05 or 0.01. For example, in inferring the two
transition rates a1,2 and a2,1 for a two-state HMM with known emissions distribution,
we would reject all models such that

2 (log p(data |θMLE)− log p(data |θ′)) > χ2
2(1− α)⇒

p(data |a′1,2, a′2,1)

p(data |aMLE
1,2 , aMLE

2,1 )
< α

(10)
Allowing multiple parameters to vary together is computationally expensive, as the
time and space in memory needed to record a d-dimensional likelihood region scale
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as O(md), where m is the meshsize - the number of likelihood samples per parameter
in the region of the MLE. We thus vary only up to two parameters together, and
potentially overlook higher-dimensional structure in the log likelihood near the MLE.

Clustering

Log likelihood for multiple traces under one model

If we are working with a set of multiple traces, as we would when combining the
data of multiple molecules, we can compute a likelihood for all of them if we assume
that the traces are generated independently. For NT independent traces, the log
likelihood for a particular model with parameter vector φ is

log p(all traces |φ) =

NT∑
i=1

log p(tracei |φ) (11)

Log likelihood for multiple traces under a mixture of different
models

For clustering analysis we assume that the traces are independently generated from
a mixture of C models indexed by parameter vectors Φ = (φ1, . . . , φC) and that
we have found for each of the NT traces a maximum likelihood estimator of the
model parameters (θMLE

1 , . . . , θMLE
NT

) obtained by Baum-Welch. The t-th trace has
an unknown label λt in {1, . . . , C} corresponding to the mixture component to which
it belongs. Each model i in the mixture generates a fraction ηi of the traces. In this
case the log likelihood for the mixture model is

log p(all traces |Φ, η) =

NT∑
i=1

log

(
C∑

j=1

p(tracei, λi = j|Φ, η)

)
(12)

We are excluding the trace length, which varies trace to trace and is determined
by experimental conditions like optical power, from our clustering analysis. This is
because we do not have a general model for the trace length distribution as a func-
tion of experimental parameters. In the text, we held the product of SNR and trace
length constant, but this is a phenomenological model that we used to illustrate the
tradeoff between higher SNR and longer observation time, and this product rela-
tionship would need to be verified for data. Our implementation of clustering would
thus miss groups of traces that differ only in their length distribution.
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Now we attempt to maximize the likelihood by maximizing the expected likelihood,
by iteratively maximizing the quantity

Q((Φ′η′), (Φ, η)) =

NT∑
i=1

C∑
j=1

p(λi = j|tracei,Φ, η) log
p(tracei, λi = j,Φ′, η′)

p(λi = j|tracei,Φ, η)
(13)

as a function of (Φ′η′). We will approximate p(tracei, λi = j|Φ, η) by the probability
density function for a multivariate normal distribution, so that we can perform the
optimization of Q as a function of (Φ′η′) by setting

φ′j =

∑NT

i=1 p(λi = j|tracei,Φ, η) θMLE
i∑NT

i=1 p(λi = j|tracei,Φ, η)
(14)

η′j ∼
NT∑
i=1

p(λi = j|tracei, φj, ηj) (15)

The vector η′ is normalized to sum to 1. To compute the above quantities we use
Bayes rule to write

p(λi = j|tracei,Φ, η) ∼ p(tracei|φj) ηj (16)

The vector p(λ|tracei,Φ, η) is normalized to sum to 1. We repeat this update rule
until numerical convergence of (Φ′, η′).

Quick computation of data likelihood for cluster model

To evaluate the quantities in equations 14,15 we must repeatedly compute the quan-
tity p(tracei|φj) for each of NT traces for each of C clusters for each iteration until
numerical convergence of (Φ′, η′). Using the expression in equation 4 to do this is
slow, as each evaluation of equation 4 requires us to look at the data in the trace.
Instead we approximate this likelihood with a normal distribution. This assumption
is justified for long traces in [3].

p(tracei|φ) ∼ N(θMLE
i , K) (17)

To find the covariance matrix K we evaluate p(tracei|φj) the slow way (using equa-
tion 4) at several points near θMLE

i and then run a numerical solver in MATLAB
to fit these values to a multivariate normal distribution. Once we have computed
K, we can evaluate p(tracei|φj) at additional points φ without looking at the trace
data again by evaluating the pdf of this distribution at φ. This method reduces to
k-means clustering if we reduce the entries of K by a large factor, so that one of
p(tracei|φj) is much larger than the others for some cluster j.
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Cluster size selection

To aid the user in estimating the number of clusters, we compute both a Bayesian
information criterion (BIC) and the cluster size distribution as a function of total
cluster number. To compute the BIC, we compute the likelihood for the dataset
under the mixture model (Φ, η) using equation 12 and then compute the BIC:

BIC(Φ, η) = −2 log p(all traces |Φ, ~η) + C · d · logNT (18)

Where C is the number of clusters, NT is the number of traces, and d is the number
of parameters along which we are clustering (our implementation restricts d to at
most 3).

A visually useful way to select the number of clusters is to keep increasing the
total cluster number until new clusters have hardly any members. To compute the
cluster size distribution, we assign each trace to its nearest cluster by choosing j to
maximize the quantity in equation 16 for each trace and count up the number of
traces in each cluster.

size of cluster j = |{tracei|j = arg max
k
p(λi = k|tracei,Φ, η)}| (19)

Thermodynamic constraint

In general the fit HMM of the Baum-Welch algorithm need not satisfy detailed bal-
ance. One may have good reason to believe the system in question is in thermal
equilibrium and wish to impose this constraint. Even if the data arises from a
model in thermal equilibrium, the optimization algorithm is likely to output rates
that almost but not exactly satisfy detailed balance, while the quality of fit would
not suffer if we were to insist on this condition being exactly (within numerical tol-
erance) satisfied during optimization. We describe our imposition of this constraint
in the optimization routine.

A system in thermal equilibrium satisfies detailed balance, which may be stated
in two equivalent ways:

πi ai,j = πj aj,i∀ states i, j (20)

ac1,c2ac2,c3 · · · ack,c1 = ac1,ck · · · ac3,c2ac2,c1∀ cycles (c1, . . . , ck) (21)

Where π is the stationary distribution of the Markov chain with transition matrix
(A)i,j = ai,j and (c1, . . . , ck) is a cycle of states of the Markov chain.

We implement an approach in the spirit of equation 20. The idea is to impose
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detailed balance by averaging the transition matrix with its time-reversed version
Arev, much as we can symmetrize a matrix by averaging it with its transpose. We
obtain Arev by

Arev j,i = P (xt = i|xt+1 = j) =
P (xt+1 = j|xt = i) P (xt = i)

P (xt+1 = j)
= ai,j

πi
πj

(22)

And obtain a transition matrix that satisfies detailed balance Adb by

Adb =
A+ Arev

2
(23)

We can verify that Adb satisfies detailed balance and has the same stationary distri-
bution π as A. Adb has the nice properties that ai,j = aj,i = 0⇒ adb, i,j = adb, j,i =
0, that the state lifetimes implied by A and Adb are the same and that Adb is not
far from A if A is not far from satisfying detailed balance. In this way we do not
need to fix an arbitrary choice of rates as a function of the others or enumerate the
cycles of our chain in the correct order while taking into account rates that are 0,
and are not susceptible to the large numerical deviations from A that may occur
when one rate is small.

This method does not hold a subset of the rates fixed to satisfy detailed balance.
This complicates interpretation of confidence bounds for the rates, since we can not
vary just one rate in the transition matrix; all rates are altered to satisfy detailed
balance in equation 23. Overall, we used equation 23 for its preservation of the
stationary distribution and its ease of implementation.

As stated earlier, imposing detailed balance on a fit to traces from molecules in
thermal equilibrium will not hurt the quality of the fit much, since the inferred A
almost satisfies detailed balance. On the other hand, imposing this condition on a
fit to traces from molecules far from thermal equilibrium will result in Adb differing
substantially from A and thus hurting the fit more. We can thus detect systems far
from thermal equilibrium by trying both the constrained and unconstrained detailed
balance fit and comparing the resulting log p(data |θMLE). To see if the resulting re-
duction in data likelihood justifies imposing detailed balance we again turn to the
BIC. The number of free parameters eliminated by imposing detailed balance for a
K state Markov model with P forbidden pairs of transitions is

felim,db = [number of edges in complete graph on states]
− [number of edges in spanning tree on states]− P

= K(K − 1)/2− P − (K − 1) = (K2 − 3K)/2 + 1− P
(24)

We can now apply equation 8 with d → d − felim,db to compute the BIC for the
constrained and unconstrained detailed balance model. Note that setting just ai,j
equal to 0, but not aj,i, is in general a constraint that may not be compatible with
detailed balance, so we must set aj,i = 0 as well to enforce adb, i,j.
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Continuous to discrete time models

We have so far discussed only HMM’s that produce emissions and switch states
at discrete series of times. In studying single-molecule signals we are, however,
often working with systems that evolve continuously, but which are sampled at
some finite rate fs = 1/∆ts, where ∆ts is the time between successive samples. It
is not in general correct to obtain continuous-time frequencies by multiplying the
transition probabilities by a factor of fs, since as probabilities the elements of the
transition matrix A are bounded from above by 1, whereas frequencies are not. This
approximation holds so long as the entries ai,j are small for each pair of states (i, j).
In a continuous-time setting, the elements of A take on the interpretation

aij = P(xt+∆ts = j|xt = i) (25)

For any sampling frequency, there is some probability that multiple hops occur
during a single sampling period ∆ts. Since a discrete-time approximation of the
system only considers the endpoints of each sampling period, the quantity aijfs is
an underestimate of the true continuous-time hopping rate between the states, and
a gross underestimate for sampling rates comparable to the inferred hopping rates.
We can convert discrete to continuous rates via the relation

F = I + fs · logA (26)

where log denotes a matrix (not element-wise) logarithm of A and I is the identity
matrix. The elements of (F )ij = fij are the frequencies for transitions from state i
to state j in units of s−1. For the case of a two-state system, equation 26 implies
that we need to rescale both hopping frequencies by the same factor

f12 =
− log(1− a12 − a21)

a12 + a21

· fs · a12 (27)

For small values of a12 + a21, the numerical correction pre-factor is approximately
1 + (a12 + a21)/2.
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